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Abstract

We give simple characterizations of contact 1-forms in terms of Dirac structures. We also relate
normal almost contact structures to the theory of Dirac structures.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Dirac structures on manifolds provide a unifying framework for the study of many
geometric structures such as Poisson structures and closed 2-forms. They have applications
to modeling of mechanical and electrical systems (see, for instance,[2]). Dirac structures
were introduced by Courant and Weinstein (see[3,4]). Later, the theory of Dirac structures
and Courant algebroids was developed in[11].

In [7], Hitchin defined the notion of a generalized complex structure on an even-
dimensional manifoldM, extending the setting of Dirac structures to the complex vector
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bundle (TM ⊕ T ∗M) ⊗ C. This allows to include other geometric structures such as Calabi-
Yau structures in the theory of Dirac structures. Furthermore, one gets a new way to look
at Kähler structures (see[6]). However, the odd-dimensional analogue of the concept of a
generalized complex structure was still missing. The aim of this Note is to fill this gap.

The first part of this paper concerns characterizations of contact 1-forms using the notion
of anE1(M)-Dirac structure as introduced in[12]. In the second part, we define and study
the odd-dimensional analogue of a generalized complex structure, which includes the class
of almost contact structures. There are many distinguished subclasses of almost contact
structures: contact metric, Sasakian,K-contact structures, etc. We hope that the theory of
Dirac structures will lead to new insights on these structures.

2. E1(M)-Dirac structures

2.1. Definition and examples

In this section, we recall the description of several geometric structures (e.g. contact
structures) in terms of Dirac structures.

First of all, observe that there is a natural bilinear form〈·, ·〉 on the vector bundleE1(M) =
(TM × R) ⊕ (T ∗M × R) defined by:

〈(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)〉 = 1
2(iX2α1 + iX1α2 + f1g2 + f2g1)

for any (Xj, fj) + (αj, gj) ∈ Γ (E1(M)), with j = 1,2. Moreover, for any integerk ≥ 1,
one can define

d̃ : Ωk(M) × Ωk−1(M) → Ωk+1(M) × Ωk(M),

by the formula

d̃(α, β) = (dα, α − dβ)

for anyα ∈ Ωk(M), β ∈ Ωk−1(M), whered is the exterior differentiation operator. When
k = 0, we defined̃f = (df, f ). Clearly, d̃2 = 0. We also have the contraction map given
by:

i(X,f )(α, β) = (iXα + fβ, − iXβ)

for anyX ∈ �(M), f ∈ C∞(M), α ∈ Ωk(M), β ∈ Ωk−1(M). From these two operations,
we get

L̃(X,f ) = i(X,f ) ◦ d̃ + d̃ ◦ i(X,f ).



D. Iglesias-Ponte, A. Wade / Journal of Geometry and Physics 53 (2005) 249–258 251

On the space of smooth sections ofE1(M), we define an operation similar to the Courant
bracket by setting

[(X1, f1) + (α1, g1), (X2, f2) + (α2, g2)]

= ([X1, X2], X1 · f2 − X2 · f1) + L̃(X1,f1)(α2, g2) − i(X2,f2)d̃(α1, g1) (1)

for any (Xj, fj) + (αj, gj) ∈ Γ (E1(M)) with j = 1,2. The skew-symmetric version of
[·, ·] was introduced in[12]. One can notice that̃d is nothing but the operatord(0,1) in-
troduced[8]. Moreover,E1(M) is an example of the so-called Courant-Jacobi algebroid
(see[5]).

Definition 2.1 (Wade[12]). An E1(M)-Dirac structure is a sub-bundleL of E1(M) which
is maximally isotropic with respect to〈·, ·〉 and integrable, i.e.,Γ (L) is closed under the
bracket [·, ·].

Now, we consider some examples ofE1(M)-Dirac structures.

(i) Jacobi structures. A Jacobi structureon a manifoldM is given by a pair (π,E) formed
by a bivector fieldπ and a vector fieldE such that[10]

[E,π]s = 0, [π, π]s = 2E ∧ π,

where [, ]s is the Schouten–Nijenhuis bracket on the space of multi-vector fields. A
manifold endowed with a Jacobi structure is called aJacobi manifold. WhenE is zero,
we get a Poisson structure.

Let (π,E) be a pair consisting of a bivector fieldπ and a vector fieldE onM. Define
the bundle map (π,E)�: T ∗M × R → TM × R by setting

(π,E)�(α, g) = (π�(α) + gE,−iEα),

whereα is a 1-form andg ∈ C∞(M). The graphL(π,E) of (π,E)� is anE1(M)-Dirac
structure if and only if (π,E) is a Jacobi structure[12].

(ii) Differential 1-forms. Any pair (ω, η) formed by a 2-formω and a 1-formη determines
a maximally isotropic sub-bundleL(ω,η) of E1(M) given by:

(L(ω,η))x = {(X, f )x + (iXω + fη,−iXη)x : X ∈ X(M), f ∈ C∞(M)}.

Moreover, we have thatΓ (L(ω,η)) is closed under the bracket given by (1) if and only
if ω = dη. TheE1(M)-Dirac structure associated with a 1-formη will be denoted by
Lη (see[9]).

2.2. Characterization of contact structures

In this section, we will characterize contact structures in terms of Dirac structures.
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Let M be a (2n + 1)-dimensional smooth manifold. A 1-formη on M is contact if
η ∧ (dη)n �= 0 at every point. There arises the question of how this condition translates into
properties forLη.

First, we give a characterization of Dirac structures coming from Jacobi structures (re-
spectively, from differential 1-forms).

Proposition 2.2. A sub-bundle L ofE1(M) is of the formL(Λ,E) (resp., L(ω,η)) for a pair
(Λ,E) ∈ X2(M) × X(M) (resp., (ω, η) ∈ Ω2(M) × Ω1(M)) if and only if

(i) L is maximally isotropic with respect to〈·, ·〉.
(ii) Lx ∩ ((TxM × R) ⊕ {0}) = {0} (resp., Lx ∩ ({0} ⊕ (T ∗

x M × R)) = {0}) for everyx ∈
M.

Moreover, (Λ,E) is a Jacobi structure, (resp. ω = dη) if and only ifΓ (L) is closed under
the extended Courant bracket(1).

Proof. The proof of this proposition is straightforward (see[4] for the linear case). It is
left to the reader. �

Now, letη be a contact structure onM. Then there exists an isomorphism�η : X(M) →
Ω1(M) given by�η(X) = iX dη + η(X)η which allows us to construct a Jacobi structure
(π,E) given by:

π(α, β) = dη(�−1
η (α), �−1

η (β)) for α, β ∈ Ω1(M), E = �−1
η (η),

which satisfies that ((π,E)�)−1(X, f ) = (−iX dη − fη, η(X)). Moreover, if (π,E) is a Ja-
cobi structure such that (π,E)� is an isomorphism then it comes from a contact structure.
From these facts, we deduce that for a contact structureLη

∼= L(π,E). As a consequence of
this result andProposition 2.2, one gets:

Theorem 2.3. There is a one-to-one correspondence between contact1-forms on a
(2n + 1)-dimensional manifold andE1(M)-Dirac structures satisfying the properties

Lx ∩ ((TxM × R) ⊕ {0}) = {0},

Lx ∩ ({0} ⊕ (T ∗
x M × R)) = {0}

for everyx ∈ M.

Another characterization is the following:

Theorem 2.4. An E1(M)-Dirac structureLη corresponds to a contact1-form η if and
only if

Lη ∩ ((TM × {0}) ⊕ ({0} × R)),

is a1-dimensional sub-bundle ofE1(M) generated by an element of the form(ξ,0) + (0,−1).
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Proof. Indeed, ifeX = (X,0) + (0,−iXη) theneX ∈ Lη if and only if

〈(Y, g) + (iY dη + gη,−iYη), eX〉 = 0, ∀(Y, g) ∈ X(M) × C∞(M),

but this is equivalent to dη(X, Y ) = 0, for allY ∈ X(M).
This showsLη ∩ ((TM × {0}) ⊕ ({0} × R)) is a one-dimensional sub-bundle ofE1(M)

if and only if Ker dη is a one-dimensional sub-bundle ofTM. If (ξ,0) + (0,−1) generates
Lη ∩ (TM × {0} ⊕ {0} × R) then

〈(ξ,0) + (0,−1), (0,1) + (η,0)〉 = η(ξ) − 1 = 0.

Therefore,

Ker dη ∩ Kerη = {0}.

We conclude thatη is a contact form. Moreoverξ is nothing but the corresponding Reeb field,
i.e., the vector field characterized by the equationsiξ dη = 0 andη(ξ) = 1. The converse is
obvious. �

3. Generalized complex structures

In this section, we will recall the notion of generalized complex structures.

Definition 3.1 (Gualtieri[6]). LetM be a smooth even-dimensional manifold. Ageneralized
almost complex structureonM is a sub-bundleE of the complexification (TM ⊕ T ∗M) ⊗ C

such that

(i) E is isotropic.
(ii) (TM ⊕ T ∗M) ⊗ C = E ⊕ Ē, whereĒ is the conjugate ofE.

The terminology is justified by the following result:

Proposition 3.2 (Gualtieri[6]). There is a one-to-one correspondence between generalized
almost complex structures and endomorphismsJ of the vector bundleTM ⊕ T ∗M such that
J 2 = −id andJ is orthogonal with respect to〈·, ·〉.
Proof. Suppose thatE is a generalized almost complex structure onM. Define

J(e) = √−1e, J(ē) = −√−1ē for anye ∈ Γ (E).

Then,J satisfies the propertiesJ 2 = −id andJ ∗ = −J. Conversely, assume thatJ sat-
isfies these two properties. Define the sub-bundleE whose fibre is the

√−1-eigenspace of
J. It is not difficult to prove thatE is isotropic under〈·, ·〉. Moreover, sincēE is just the
(−√−1)-eigenspace ofJ we get that (TM ⊕ T ∗M) ⊗ C = E ⊕ Ē. �
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We have the following definition:

Definition 3.3. Let M be an even-dimensional smooth manifold. A generalized almost
complex structureE ⊂ (TM ⊕ T ∗M) ⊗ C is integrableif it is closed under the Courant
bracket. Such a sub-bundle is called ageneralized complex structure.

The notion of a generalized complex structure on an even-dimensional smooth manifold
was introduced by Hitchin in[7].

4. Generalized almost contact structures

The existence of a generalized almost complex structure onM forces the dimension of
M to be even (see[6]). A natural question to ask is: what would be the odd-dimensional
analogue of a generalized almost complex structure?

To define the analogue of the concept of a generalized almost complex structure for
odd-dimensional manifolds, one should consider the vector bundleE1(M) ⊗ C instead of
(TM ⊕ T ∗M) ⊗ C.

Definition 4.1. LetM be a real smooth manifold of dimensiond = 2n + 1. A generalized
almost contact structureonM is a sub-bundleE of E1(M) ⊗ C such thatE is isotropic and

E1(M) ⊗ C = E ⊕ Ē,

whereĒ is the complex conjugate ofE.

By a proof similar to that ofProposition 3.2, one gets the following result.

Proposition 4.2. Let M be a real smooth manifold of dimensiond = 2n + 1. There is
a one-to-one correspondence between generalized almost contact structures on M and
endomorphismsJ of the vector bundleE1(M) such thatJ 2 = −id andJ is orthogonal
with respect to〈·, ·〉.

4.1. Examples

4.1.1. Almost contact structures
LetM be a smooth manifold of dimensiond = 2n + 1. An almost contact structureon

M is a triple (ϕ, ξ, η), whereϕ is a (1,1)-tensor field,ξ is a vector field onM, andη is a
1-form such that

η(ξ) = 1 and ϕ2(X) = −X + η(X)ξ, ∀X ∈ X(M),

(see[1]). As a first consequence, we get that

ϕ(ξ) = 0, η ◦ ϕ = 0.
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We now show that every almost contact structure determines a generalized almost contact
structure. DefineJ : Γ (TM × R) → Γ (TM × R) by:

J(X, f ) = (ϕX − fξ, η(X)) for all X ∈ X(M), f ∈ C∞(M).

ThenJ2 = −id. Let J∗ be the dual map ofJ . Consider the endomorphismJ defined by:

J(u) = J(X, f ) − J∗(α, g)

for u = (X, f ) + (α, g) ∈ Γ (E1(M)). ThenJ satisfiesJ2 = −id andJ∗ = −J.
In addition, one can deduce that the generalized almost contact structureE is given by:

E = F ⊕ Ann(F ), (2)

where

Fx = {J(X, f )x + √−1(X, f )x|(X, f ) ∈ Γ (TM × R)}, (3)

and Ann(F ) is the annihilator ofE.

4.1.2. Almost cosymplectic structures
An almost cosymplectic structure on a smooth manifoldM of dimensiond = 2n + 1 is

a pair (ω, η) formed by a 2-formω and a 1-formη such thatη ∧ ωn �= 0 everywhere. The
map� : X(M) → Ω1(M) defined by:

�(X) = iXω + η(X)η, ∀X ∈ X(M),

is an isomorphism ofC∞(M)-modules. The vector fieldξ = �−1(η) is called the Reeb vector
field of the almost cosymplectic structure and it is characterized byiξω = 0 andη(ξ) = 1.
DefineΘ : X(M) × C∞(M) → Ω1(M) × C∞(M) by:

Θ(X, f ) = (iXω + fη,−η(X)), ∀X ∈ X(M), ∀f ∈ C∞(M).

One can check thatΘ is an isomorphism ofC∞(M)-modules. LetJ : Γ (E1(M)) →
Γ (E1(M)) be the endomorphism given by:

J((X, f ) + (α, g)) = −Θ−1(α, g) + Θ(X, f ).

It is easy to check thatJ2 = −id. Moreover, forei = (Xi, fi) + (αi, gi) ∈ Γ (E1(M)), we
have

〈Je1, e2〉 = 〈−Θ−1(α1, g1) + Θ(X1, f1), (X2, f2) + (α2, g2)〉 = −〈e1,Je2〉.

HenceJ∗ = −J.
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This shows that every almost cosymplectic structure determines a generalized almost
contact structure. Furthermore, the associated bundleE is given by:

Ex = {(X, f )x − √−1Θ(X, f )x|(X, f ) ∈ Γ (TM × R)}. (4)

5. Integrability

By analogy to generalized complex structures, one can consider the integrability of a
generalized almost contact structure.

Definition 5.1. On an odd-dimensional smooth manifoldM, we say that a generalized
almost contact structureE ⊂ E1(M) ⊗ C is integrableif it is closed under the extended
Courant bracket given byEq. (1).

5.1. Examples

5.1.1. Normal almost contact structures
An almost contact structure (ϕ, ξ, η) is normal if

Nϕ(X, Y ) + dη(X, Y )ξ = 0 for all X, Y ∈ X(M),

whereNϕ is the Nijenhuis torsion ofϕ, i.e.,

Nϕ(X, Y ) = [ϕX, ϕY ] + ϕ2[X, Y ] − ϕ[ϕX, Y ] − ϕ[X, ϕY ].

Some properties of normal almost contact structures are the following ones (see[1]).

Lemma 5.2. If an almost contact structure(ϕ, ξ, η) is normal then it follows that

dη(X, ξ) = 0, η[ϕX, ξ] = 0, [ϕX, ξ] = ϕ[X, ξ], dη(ϕX, Y ) = dη(ϕY,X)

for X, Y ∈ X(M).

Proof. Applying normality condition toY = ξ we get that

0 = Nϕ(X, ξ) + dη(X, ξ)ξ = ϕ2[X, ξ] − ϕ[ϕX, ξ] + dη(X, ξ)ξ.

Using the fact thatη ◦ ϕ = 0, we obtain dη(X, ξ) = 0, for anyX ∈ X(M). As a consequence,
η[ϕX, ξ] = 0. On the other hand,

0 = Nϕ(ϕX, ξ) + dη(ϕX, ξ)ξ

= ϕ2[ϕX, ξ] − ϕ[ϕ2X, ξ] + dη(ϕX, ξ)ξ = −[ϕX, ξ] + ϕ[X, ξ].

Finally, if X, Y ∈ X(M) then

η(Nϕ(ϕX, Y ) + dη(ϕX, Y )ξ) = −η([ϕ2X, Y ] + [ϕX, ϕY ]) + dη(ϕX, Y ).
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We deduce that dη(ϕX, Y ) = dη(ϕY,X). �

We have seen that every almost contact structure (ϕ, ξ, η) determines a generalized almost
complex structureE ⊂ E1(M) ⊗ C. Furthermore, we have the following result:

Theorem 5.3.An almost contact structure(ϕ, ξ, η) is normal if and only if its corresponding
sub-bundle E given by(2) is integrable.

Proof. Clearly, the integrability ofE is equivalent to the closedness ofΓ (F ) under the ex-
tended Courant bracket, whereF is the sub-bundle defined by (3). Suppose [Γ (F ), Γ (F )] ⊂
Γ (F ). Let uX = (X,0), uY = (Y,0) ∈ Γ (E1(M)). DenoteeX = JuX + √−1uX andeY =
JuY + √−1uY . Then

[eX, eY ] ∈ F ⇔ [JuX, JuY ] − [uX, uY ] = J([JuX, uY ] + [uX, JuY ]).

By a simple computation, one gets

[JuX, JuY ] − [uX, uY ] = ([ϕX, ϕY ] − [X, Y ], ϕX · η(Y ) − ϕY · η(X)).

Moreover, the termJ([JuX, uY ] + [uX, JuY ]) equals

(ϕ([ϕX, Y ] + [X, ϕY ]) − (X · η(Y ) − Y · η(X))ξ, η([ϕX, Y ] + [X, ϕY ])).

Therefore [eX, eY ] ∈ Γ (F ) if and only if

[ϕX, ϕY ] − [X, Y ] = ϕ([ϕX, Y ] + [X, ϕY ]) − (X · η(Y ) − Y · η(X))ξ,

ϕX · η(Y ) − ϕY · η(X) = η([ϕX, Y ] + [X, ϕY ]).

Because [X, Y ] = −ϕ2([X, Y ]) + η([X, Y ])ξ andη(ϕX) = 0, for anyX, Y ∈ X(M), this
implies the relations

Nϕ(X, Y ) + dη(X, Y )ξ = 0, dη(ϕX, Y ) = dη(ϕY,X).

This proves that ifE is integrable then the almost contact structure is normal. Conversely,
suppose thatNϕ(X, Y ) + dη(X, Y )ξ = 0, for anyX, Y in X(M). Using Lemma 5.2, we
also have that dη(ϕX, Y ) = dη(ϕY,X). Thus, we conclude that [eX, eY ] ∈ Γ (F ), for any
eX = uX + √−1JuX, eY = uY + √−1JuY in Γ (F ).

It remains to show that [eX, J(0,1) + √−1(0,1)] is in Γ (F ), for any sectioneX =
JuX + √−1uX ∈ Γ (F ). This condition is equivalent to the relations

[ϕX, ξ] = ϕ[X, ξ], ξ · η(X) = −η([X, ξ]).

The relationξ · η(X) = −η([X, ξ]) is satisfied since dη(X, ξ) = 0 by Lemma 5.2. We
conclude that [eX, J(0,1) + √−1(0,1)] ∈ F . ThereforeF is closed under that extended
Courant bracket, which means thatE is integrable. �
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5.1.2. Contact structures
Let (ω, η) be an almost cosymplectic structure andE the associated generalized almost

contact structure given by (4). We will prove that the integrability condition forcesη to be
a contact structure. In fact,

Proposition 5.4. Let(ω, η) be an almost cosymplectic structure on a manifold M and E the
associated generalized almost contact structure. Then, E is integrable if and only ifω = dη.
As a consequence, η is a contact structure on M.

Proof. Let e1, e2 ∈ Γ (E). One can easily show that [e1, e2] ∈ Γ (E) if and only ifω = dη.
�

Remark 5.5. Following [6], one can define an analogue of generalized Kähler structure.
In our setting, one could define the notion of a generalized Sasakian structure as a pair
(J1,J2) of commuting generalized integrable generalized almost contact structures, i.e.
J1 ◦ J2 = J2 ◦ J1, such thatG = −J1J2 defines a positive definite metric onE1(M). In
particular, every Sasakian structure is a generalized Sasakian structure. We postpone the
study of this notion and its main properties to a separate paper.
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[10] A. Lichnerowicz, Les varíet́es de Jacobi et leurs algèbres de Lie locales de Kirillov, J. Math. Pures Appl. 57

(1978) 453–488.
[11] Z.-J. Liu, A. Weinstein, P. Xu, Manin triples for Lie bialgebroids, J. Differ. Geom. 45 (1997) 547–574.
[12] A. Wade, Conformal Dirac structures, Lett. Math. Phys. 53 (2000) 331–348.


	Contact manifolds and generalized complex structures
	Introduction
	E1(M)-Dirac structures
	Definition and examples
	Characterization of contact structures

	Generalized complex structures
	Generalized almost contact structures
	Examples
	Almost contact structures
	Almost cosymplectic structures


	Integrability
	Examples
	Normal almost contact structures
	Contact structures


	Acknowledgments
	References


